Selection of High Strength Encapsulant for MEMS Devices Undergoing High Pressure Packaging

نویسندگان

  • Azrul Azlan Hamzah
  • Yusnira Husaini
  • Burhanuddin Yeop Majlis
  • Ibrahim Ahmad
چکیده

Deflection behavior of several encapsulant materials under uniform pressure was studied to determine the best encapsulant for MEMS device. Encapsulation is needed to protect movable parts of MEMS devices during high pressure transfer molded packaging process. The selected encapsulant material has to have surface deflection of less than 5 μm under 100 atm vertical loading. Deflection was simulated using CoventorWare ver.2005 software and verified with calculation results obtained using shell bending theory. Screening design was used to construct a systematic approach for selecting the best encapsulant material and thickness under uniform pressure up to 100 atm. Materials considered for this study were polyimide, parylene C and carbon based epoxy resin. It was observed that carbon based epoxy resin has deflection of less than 5 μm for all thickness and pressure variations. Parylene C is acceptable and polyimide is unsuitable as high strength encapsulant. Carbon based epoxy resin is considered the best encapsulation material for MEMS under high pressure packaging process due to its high strength.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stresa, Italy, 25-27 April 2007 SELECTION OF HIGH STRENGTH ENCAPSULANT FOR MEMS DEVICES UNDERGOING HIGH PRESSURE PACKAGING

Deflection behavior of several encapsulant materials under uniform pressure was studied to determine the best encapsulant for MEMS device. Encapsulation is needed to protect movable parts of MEMS devices during high pressure transfer molded packaging process. The selected encapsulant material has to have surface deflection of less than 5 μm under 100 atm vertical loading. Deflection was simulat...

متن کامل

Sputtered Encapsulation as Wafer Level Packaging for Isolatable MEMS Devices: A Technique Demonstrated on a Capacitive Accelerometer

This paper discusses sputtered silicon encapsulation as a wafer level packaging approach for isolatable MEMS devices. Devices such as accelerometers, RF switches, inductors, and filters that do not require interaction with the surroundings to function, could thus be fully encapsulated at the wafer level after fabrication. A MEMSTech 50g capacitive accelerometer was used to demonstrate a sputter...

متن کامل

Investigation of Au/Si Eutectic Wafer Bonding for MEMS Accelerometers

Au/Si eutectic bonding is considered to BE a promising technology for creating 3D structures and hermetic packaging in micro-electro-mechanical system (MEMS) devices. However, it suffers from the problems of a non-uniform bonding interface and complex processes for the interconnection of metal wires. This paper presents a novel Au/Si eutectic wafer bonding structure and an implementation method...

متن کامل

Interconnection and Packaging Issues of Microelectromechanical Systems (MEMS) and COTS MEMS

Integrated circuit packaging and their testing is well advanced because of the maturity of the IC industry, their wide applications, and availability of industrial infrastructure.[1,2] This is not true for MEMS with respect to packaging and testing. It is more difficult to adopt standardized MEMS device packaging for wide applications although MEMS use many similar technologies to IC packaging....

متن کامل

Packaging-compatible wafer level capping of MEMS devices

0167-9317/$ see front matter 2012 Elsevier B.V. A http://dx.doi.org/10.1016/j.mee.2012.11.010 ⇑ Corresponding author. E-mail address: [email protected] (P.A. Kohl). A cost-effective, wafer-level package process for microelectromechanical devices (MEMS) is presented. The movable part of MEMS device is encapsulated and protected while in wafer form so that commodity, lead-frame packaging can be use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0802.3086  شماره 

صفحات  -

تاریخ انتشار 2007